
Introduction

With wood being orthotropic, a practical test method

must be limited to high-aspect-ratio flat slab geome-

try, which eliminates many short-pulse heat methods

provided in the literature [1–3]. Methods using sus-

tained heat pulse or steady-state conditions [4, 5] are

subject to strong moisture migration effects, which

can lead to confusion or inconsistencies in the derived

heat and moisture transfer properties. Difficulties in

measuring moisture and temperature profiles within a

solid wood specimen, for deriving moisture- and tem-

perature-dependent properties, preclude methods de-

veloped for soft organic matter. In this method we de-

rived an analytical Laplace transform solution to the

Luikov’s differential equations for one-dimensional

heat and moisture transfer [6–9] and for a gradual fi-

nite heat pulse applied to both surfaces of a flat slab.

The result is a rapid moisture wave being thermally

driven into the slab and then a gradual settling back to

the original uniform moisture upon heat pulse re-

moval. This moisture movement also involves the la-

tent heat of water, which significantly perturbs the

conductive heat transfer process. Note that this

quasi-heat-pulse method preserves the average mois-

ture content of the wood slab and prevents severe gra-

dients from occurring along the slab so as to preserve

one-dimensional flow processes across the slab. The

moist, porous, temperature-dependent, and ortho-

tropic wood under constant pressure has the coupled

transient heat and mass transfer equations [6] as

ρCq

∂
∂
T

t
= ∇·(Kq·∇T) + ελρCm

∂
∂
U

t

+ gq(
�

r ,t) (1)

ρCm

∂
∂
U

t
= ∇·(Km·[∇U+δ∇T]) + gm(

�

r ,t) (2)

where T is temperature, U moisture potential, t time,

Kq and Km are thermal and moisture conductivity co-

efficients, Cq and Cm are heat and moisture capacities,

gq(
�

r ,t) and gm(
�

r ,t) are heat and mass generations as di-

rect functions of position and time, respectively, ρ is

dry body density, ε ratio of vapor diffusion coefficient

to coefficient of total moisture diffusion, λ heat of

phase change, and δ the thermogradient coefficient.

The simplest situation is to apply a steady heat flux,

but zero mass flux, across the boundaries in a princi-

pal direction of the material. This zeroes the term

∇U + δ∇T in that principal direction and thus defines

the moisture migration condition at steady state. Con-

sequently one obtains a constant heat flux �

''
�

q = Kq·∇T

across the principal direction. The thermal conductiv-

ity Kq and mass conductivity Km are considered ma-

trix variables for representing anisotropic material,

and the off-diagonal terms are zero for principal di-

rections or for orthotropic materials [10]. However,

the use of a steady-state apparatus for high-aspect-ra-

tio samples is not as simple, because the thermal con-

ductivity and mass conductivity [6] generally in-
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crease with both temperature T and moisture content

C = CmU. The result is a non-linear distribution of

both temperature and moisture content across the

sample thickness. Likewise, another simple situation

is to apply a constant mass flux, but zero heat flux,

across the boundaries in a principal direction of the

material. By measuring both temperature and mois-

ture profiles within the sample in this test procedure,

the value of mass conductivity Km can also be derived

as function of temperature and moisture content. The

heat capacity Cq and heat of phase change λ are as-

sumed available from differential scanning calorime-

ter measurements or another method. This two-step

procedure was used for evaluating certain food mate-

rials, such as bread [11]. However, the procedure is

implemented rarely for wood materials because of the

difficulty of obtaining reliable simultaneous tempera-

ture and moisture profiles within the sample.

As an alternative, one can take advantage of the

mass diffusivity as being two orders of magnitudes

less than thermal diffusivity. This approach utilizes

specialized transient methods [6]; that is, to obtain

moisture conductivity Km, the sample should be sub-

jected to a sustained change in moisture loss rate

while keeping its temperature at a steady value, as ap-

proximately in a high-velocity, very dry convective

environment. On the other hand, for obtaining the

thermal properties Cq and Keff = Kq + ελδKm, a short

heat conductive pulse should be applied to the sample

in a way that allows the thermal wave to dissipate

fairly rapidly. While the sample gradually reaches

some uniform temperature, any slight perturbation in

the moisture profile due to heat-pulse-generated wa-

ter flux �

"
�

mq = δKm·∇T is gradually flattened back to the

original uniform moisture profile by moisture gradi-

ents. Thus, we have Eq. (1) during the early transient

regime, which can be approximated as

ρCq

∂
∂
T

t

≅∇·(Keff·∇T) (3)

This experimental design in using heat-pulse

profile would then cause only a small perturbation in

the uniform moisture profile, thereby allowing us to

ignore Eq. (2) and the moisture gradient term in

Eq. (1). Analytical (and CFD) solutions of Eq. (3)

subject to various boundary conditions can be found

in standard heat conduction texts [10]. If the perturb-

ing moisture profile is too great, then the coupled Eqs

(1) and (2) need to be solved, for which only a few an-

alytical solutions are available. One also realizes the

steady-state value for thermal conductivity, Kq, is

generally less than the transient value for thermal

conductivity, Keff, a situation often overlooked by

some researchers but not validated. Indeed, this factor

could cause confusion in related fields, such as calcu-

lating time to ignition for wood exposed to high

irradiance using derived thermal properties. Here we

provide such validation by providing a general

quasi-analytical solution to Eqs (1) and (2).

The overall heat–mass transfer solution is for-

mulated in four phases: The first phase is to transform

coupled Eqs (1) and (2) into an analytically solvable

form by imposing constant, unidirectional surface

boundary conditions on both faces of a finitely thick

high-aspect-ratio slab and assuming that temperature-

and moisture-dependent properties are constant dur-

ing the exposure. The second phase involves applica-

tion of the Duhamel’s integral theorem for non-linear

boundary conditions. Modern computer data acquisi-

tion makes this method feasible through measuring

heat and mass losses in small time steps, thus making

the theoretical solution quasi-analytical. In the third

phase, we allow variations in temperature and mois-

ture dependency in properties (capacities and conduc-

tivities now are specific functions of temperature and

moisture content) with the analytical solution by addi-

tional transformations of the variables. The fourth

phase involves analytical transient solutions for the

walls of the specimen box and K-tester to provide

‘corrected’ boundary conditions. This quasi-analyti-

cal solution is amenable to non-linear least squares re-

gression routines used in spreadsheets. This promis-

ing technique is now formalized.

Solution with constant properties and

boundary conditions

For time-invariant properties and sources and with

unidirectional boundary conditions, Eqs (1) and (2)

are transformed to a symmetric Laplace transform as

sT (x,s) – To(x) =

α*
∂

∂

2

2

T x s

x

( , )
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∂
∂

2

2

U x,s

x

( )
+

g x

s

q
( )

(4)

sU (x,s) – Uo(x) =

αm

∂
∂

2

2

U x s

x
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where

α* =
K K

C

q m

q

+ελ δ

ρ
= αq +

ελ δ
ρ
K

m

q
C
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δ* =
ελ
ελ δ
K

K K

m

q m
+

(7)

αm =
K

C

m

m
ρ

(8)
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Likewise, time-invariant boundary conditions during

a process have similar symmetric transformations.

Because we will convert Eqs (4) and (5) to a system of

four first-order linear differential equations and solve

using a rigorous matrix algebra technique [12], the

appropriate and easiest boundary conditions are those

prescribed completely on one surface (at the origin) as

T (0,s) =
T t

s

( , )0 0>
(9)

∂
∂

T s

x

( , )0
+ δ*

∂
∂

U s

x

( , )0
=

� ( , )

( )

"
q t

K K s

0 0>
+

q m
ελ δ

(10)

U (0,s) =
U t

s

( , )0 0>
(11)

∂
∂

δ∂
∂

U s

x

T s m t

K s

( , ) ( , ) � ( , )

( )

"
0 0 0 0+ = >

x
m

(12)

At initial time, temperature and moisture are at

initial values, T0(x) and U0(x), respectively. The solu-

tion to Eqs (4) and (5) as subject to the boundary con-

ditions, Eqs (9) to (12), can be used to solve for values

and gradients of temperature and moisture at the ma-

terial’s thickness; that is, there are essentially eight

choices for boundary conditions (four for each sur-

face), of which only four are needed to obtain a

unique solution. Thus, 8!/4!4! = 70 distinct solutions

are possible, but in this short paper we provide just a

few examples and omit the mathematical process de-

scriptions. We note, however, that the homogeneous

solutions to Eqs (4) and (5), after a detailed algebraic

manipulation, have simple hyperbolic sine and cosine

functions along with simple expressions for the

eigenvalues of the matrix equation. This should allow

us to examine a variety of analytical functions for the

non-homogeneous terms and analytically solve for

the general solution of combined temperature and

moisture profile as function of time. For example, if

wood has a sudden change in thermal–moisture prop-

erties, as in a dry-out or degradation, then we use the

‘restart’ profiles, T0(x) = T(x,td) and U0(x) = U(x,td),

so that the temperature–moisture solution can then

proceed after time of degradation using the degraded

properties. In another example, microwave heating

with wood depth can be represented by the heat gen-

eration term gq(x), and wood-structure dehydration

during heated degradation can be represented by

moisture generation term gm(x). These non-homoge-

neous factors are beyond the scope of this paper.

However, eliminating these non-homogeneous pro-

cesses requires careful experimental test design that

begins with low uniform temperature and moisture

profiles and then allowing only a small jump in tem-

perature or moisture content for a test run.
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Table 1 The three-step solution with boundary conditions for the components in K-tester 637

Components First step Second step Third step

Upper thermopile with FR4

layer and water heat pulsing

TUW = data;UUW = 0

XXXXXXXXXX

TUF = data ; UUF = 0

Upper copper cladding layer

of thermopile

TUC = TUF; �"q UC = �"q UF

UUC = 0; �"m UC = 0

XXXXXXXXXXXXX

Upper 0.4-mm-thick

aluminum plate

TUA = TUC; �"q UA = �"q UC

UUA = 0; �"m UA = 0

XXXXXXXXXXXXX

25.4-mm-thick XPS foam or

wood test specimen

[Solve for T and �"q in

thermopiles from Eq. (18)]

[Solve for T and �"q in thin

aluminum plates (and copper

claddings) from Eq. (16)]

�"q US = �"q UA ; �"m US = 0

XXXXXXXXXXXXX

[Solve for T, T’, U, and U’

from Eq. (20)]

XXXXXXXXXXXXX

�"q LS = �"q LA; �"m LS =0

Lower 0.4-mm-thick

aluminum plate

XXXXXXXXXXXXX

TLA = TLC; �"q LA = �"q LC

ULA=0; �"m LA= 0

Lower copper cladding layer

of thermopile

XXXXXXXXXXXXX

TLC = TLF; �"q LC = �"q LF

ULC = 0; �"m LC = 0

Lower thermopile with FR4

layer and water heat pulsing

TLF = data ; ULF = 0

XXXXXXXXXX

TLW = data; ULW = 0

T = temperature, U = moisture potential, U = upper layers, L = lower layers, W = water side, F = thermopile, C = copper cladding,

A = Aluminum plate, S = specimen, �"q = heat flux, and �"m = water mass flux, XXXXXXXX = Material layer representation



Homogeneous solutions of three relevant

boundary conditions

In solving the transient heat and mass transfer prob-

lem for the K-tester, it is required to proceed in a

three-step process, as shown schematically in Table 1.

When the K-tester applies a heat pulse across the up-

per and lower FR4 layers, the responses in these lay-

ers are recorded with the thermocouple and thermo-

pile data. Therefore, temperatures as functions of time

are known at the surfaces of the FR4 material, for

which in applying a transient heat transfer solution we

derived the transient heat flux at the surface of the

copper cladding. This in turn allows us to solve for

transient heat transfers in the copper cladding and alu-

minum plate covering the specimen. These solutions

provide the actual time-delayed heat fluxes that will

be experienced by both surfaces of the test specimen.

The use of the aluminum plates also ensures that the

surface water fluxes are equal to zero. The corre-

sponding solution for heat and moisture transfer in the

specimen provide the profile for temperature and

moisture content values, which then are compared to

the actual surface temperature values at the interfaces

of aluminum plate and the test specimen. To obtain

close agreement in their temperature values over the

entire test time period, the values for the thermo-

physical properties of the specimen are adjusted

iteratively. We note that the K-tester has the specimen

surrounded by highly reflective, insulating, conform-

able and sealed interior walls and has a 10- by 10-cm

center sensing area that we use for the unidirectional

heat flow data.

The corresponding impact on solving Eqs (1)

and (2) from a mathematical viewpoint is to consider

only three relevant boundary conditions (BCs), al-

though 70 usable boundary conditions are possible.

The first is specifying surface values and gradients of

temperature–moisture on just one side of a material.

The aluminum skin covering over some samples and

copper surface cladding in the K-tester will be repre-

sented by this solution, although we would simplify it

by striking out the moisture terms. The second BC is

specifying just the surface values of tempera-

ture–moisture on both sides of a material. The

K-tester’s thermopile will be represented by this solu-

tion, although we will also simplify it by striking out

the moisture terms. The third BC–the most impor-

tant–is the specification of just the surface gradients

on both surfaces of a material. The wood product to

be tested will be represented by this solution. Indeed,

by heating the specimen equally on both sides in the

K-tester apparatus, no moisture mass flow would oc-

cur on specimen surfaces at any time.

The first boundary condition is Eqs (9) to (12)

and is coupled with the generic homogeneous solu-

tions of Eqs (4) and (5). Taking inverse Laplace trans-

forms of the resulting equations and applying the

Duhamel’s integral theorem for non-linear boundary

conditions [10], we obtain the following time domain

solution. First we make use of the convenient functions

P a x t L
x as

s

n
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In Eqs (13) and (14) the term b replaces the term

a when appropriate. The first BC solution for T(x,t)

and U(x,t) is shown on the next page as Eq. (16).

The symbol ⊗ represents the convolution opera-

tion with respect to time as prescribed in the

Duhamel’s integral theorem. Note the expected sym-

metry between temperature and moisture solutions in

Eq. (16). If surface moisture flow flux �"( , )m t0 and

moisture ‘capacity’ Cm are set to zero, then Eq. (16)

reduces to the classical heat conduction solution [10].

Indeed, the solution retains its complexity even if just

surface moisture flow is zero, implying transient

movement of moisture within the material that per-

turbs the heat conduction process.

The second boundary condition is obtained from

setting �x =� in previous equations in their transformed

frequency domain and solving for gradients of surface

temperature and moisture at the origin as functions of

temperature and moisture values on both surfaces.

Obtaining the inverse Laplace transform and applying

the Duhamel’s integral theorem to non-linear bound-

ary conditions [10], the resulting time domain solu-

tion is the following. First we make use of a conve-

nient function R(a,x,t) as Eq. (17) on the next page.
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Indeed, this equation seems much simpler than

Eq. (16). It also reduces to the classical heat conduc-

tion solution [10] if moisture capacity and change in

surface moisture values are set to zero. Finally, we

consider the third boundary condition, which speci-

fies the surface fluxes of temperature and moisture,

both at the origin, and the material thickness. To ob-

tain this third boundary condition, Eq. (16) is trans-

formed to the frequency domain s, differentiated with

respect to the �x variable, evaluated at �x =�, and solved

for the temperature and moisture values at the origin.

Obtaining the inverse Laplace transform and applying

the Duhamel’s integral theorem to non-linear bound-

ary conditions [10], the resulting time domain solu-

tion is the following. First, we use the function a con-

venient function S(a,x,t) as in following Eq. (19).
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In Eq. (17) the term b replaces the term a when appropriate. The second BC solution is given by Eq. (18).
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Again this formula reduces to the classical heat

conduction solution [10] when moisture capacity and

surface water flux are set to zero. Equation (20) is par-

ticularly useful for relatively thick materials because

the response function given by Eq. (19) is rapidly

convergent. As an example, if we terminate with the

fifth term (n = 5) in the first series of Eq. (19), we can

be assured of least nine significant digits accuracy for

the effective Fourier number t/a�

2
greater than 0.046.

Although the second series solution has somewhat

more algebra, it is an even more rapidly converging

series. That is, if we terminate the second series with

n = 0 and n = 1, respectively, we can be assured of

least nine significant digits accuracy for the effective

Fourier numbers less than 0.06 and 0.1, respectively.

We utilize these computational results as follows.

Implementation for use in a spreadsheet

Up to this point, the solution for heat and moisture

transfer has been analytical, as no discretization of

time or space has been used. The discretization of

time will now be required because the convolutions

resulting from the use of the Duhamel’s integral theo-

rem are very difficult to solve on an analytical basis.

However, if the time steps are small enough, then the

convolutions can be evaluated numerically. Indeed,

by representing the boundary conditions as approxi-

mately stepping functions, the time discretization

form of Eq. (20) is

Equations (16) and (18) are similarly time

discretized. Intuitively, this time discretization solu-

tion is just a series of innumerous micro-ther-

mal/mass-waves into the material. One downfall of

this approach is that the computational effort then in-

creases parabolically in the form given above, making

it impractical for many cases. However, close exami-

nation of the response function in Eq. (19) suggests

conversion to a fully recursive form shown by Eqs

(22) and (23).

The accumulating recursive terms If,m and Jf,n,m

are substituted for the appropriate terms in des-

cretized form of Eqs (16), (18), and (20) (and using
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In this equation the term b replaces the term a when appropriate. The third BC solution is Eq. (20).
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t = tm+1) in order to make the solution fully recursive.

Not only do we obtain a dramatic reduction in mem-

ory and computation requirements, we can also use

longer time steps whenever the boundary conditions

change negligibly over time. With a thick specimen

(>1 in.) and short time steps (0.7 s), the effective Fou-

rier number will possibly be quite small (<0.046). For

nine-digit accuracy, this will necessitate the use of the

first term of the second series of Eq. (19) for use in

Eq. (21) during the non-recursive time interval

tm + 1 – 0.05a�

2≤ti≤tm + 1 and application of the recur-

sive formulation to the remaining time interval. More

practically, with experimental data being no better

than three-digit precision, the first eight terms in the

first series of Eq. (19) are sufficient (meaning the sec-

ond series solution is not needed and use of the

non-recursive time interval is thereby avoided). This

dramatic improvement in computational efficiency

should rival some efficient finite difference methods.

The intriguing aspect of the discretized solution

above is the coupled explicit solutions of heat and

moisture transfer, with their order-of-magnitude dif-

ferences in the time scale of their physical processes.

This clearly is an advantage over finite difference

methods, which may require specialized matrix equa-

tion solvers or additional constructs of elaborate spa-

tial discretizations to overcome the time-scale differ-

ences. For the final adjustment, the solution to Eqs (1)

and (2), which allows for the temperature and mois-

ture content dependencies of properties, is the same as

that for the constant properties, providing we imple-

ment the following substitutions [10] prescribed by

Eq. (24).

For the Eq. (24) solution, T(x,t) and Y(x,t) are

temperature and moisture-potential deviations from

initial values for comparing with measured deviation

values, whereas T(x,t) and U(x,t) are now considered

as transformed variables having the same physical

units as temperature and moisture potential.

Calibration with extruded polystyrene foam

and measurement for redwood

In calibrating the K-tester we quasi-pulse heated

1-in.-thick aged, extruded-polystyrene foam (a de-

cade-old Dow’s blue board) in temperature jumps of

8°C from equilibrium states. We obtained from Na-

tional Institute of Standards and Technology (NIST)

material databank on-line the values and formula for

heat capacities and densities of pure polystyrene

(SRM-705a) and air as functions of temperature. By

using the measured foam’s density, the paral-

lel-mass-weighted values for the foam’s heat capacity

were then calculated to a fairly high degree of accu-

racy (within three digits precision) and were within

measurement errors of Graves et al. [4] for similarly

aged Dow’s blue board. The thermopile substrate is a

thermoset laminate (FR4) with a copper cladding

(their thicknesses were provided by Lasercomp com-

pany), so their nominal thermal properties of heat ca-

pacities, thermal conductivity, and density were

adopted from Eveloy and others [13]. The total heat

absorbed by the foam’s volumetric heat capacity after

reaching equilibrium (using the third BC solution)

was then compared with the total heat transferred
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from the thermopile during pulse heating (using the

first BC solution for copper cladding and second BC

solution for the FR4). The value for ratio of the mi-

cro-temperature changes across the thermopile thick-

ness to the thermopile microvolt signal was adjusted

(by using the Excel spreadsheet solver plug-in soft-

ware), until both the total heat values calculated were

in agreement.

The lack of an adequate standard for thermal con-

ductivity of extruded polystyrene foams is because of

great variability resulting from manufacturing pro-

cesses, particularly as they affect foam morphology,

concentrations of blowing agents, and internal thermal

radiation heat transfers. With known thermal conduc-

tivity data for both pure polystyrene [14] and air as

functions of temperature, a series-porosity-weighted

formula combining these pure state values with a 9%

radiative heat conductivity contribution at room tem-

perature was found adequate to fit the data of Graves

et al. [4] for aged Dow’s blue board. This formula was

adopted for the current blue board sample. Figure 1

compares temperature predictions with measured val-

ues and demonstrates the adequacy of the blue board

thermal properties, particularly with correlation coef-

ficients of 0.999 for both upper and lower surfaces.

The high noise level of the theoretical solution results

from the fairly low values of the thermopile signal re-

lated to the quite low heat loading of foam during the

8°C pulse-heating step. The initial lag in temperature

rise results from the thermal wave traveling through

the structure containing the thermopile even though

the heat pulsing began almost immediately. The rise

portion of the temperature curve is most sensitive to

thermal conductivity of the specimen and heat capac-

ity of the thermopile, whereas the horizontal portion

of the temperature curve is most sensitive to heat ca-

pacity of the specimen and thermal conductivity of

the thermopile.

Figure 2 shows results with the redwood flooring

with overall 3% moisture content. To obtain the most

uniform property, a long and wide floor board without

knots and with cross-grains uniformly along the

length was selected. The grooves were planed so that

air spaces and use of glue was minimized. After the

board sections were glued together, the overall speci-

men was planed flat to ensure physical contact across

the 30 by 30-cm sensing area. Despite this effort there

were large variations in density along the board

length. Therefore, when our experiments with the

K-tester are finished, the center section (10 by 10 cm)

of the specimen will be cut out and measured for

oven-dried density and moisture content for different

RH conditions. At that time we will directly link ther-

mal properties with density, moisture content, and

temperature and report it in a table in a later publica-

tion. For now we use ‘average’ values obtained with

the board scraps to demonstrate the technique. Be-

cause redwood requires a much higher heat load than

that of the XPS foam to achieve an 8°C rise, Fig. 2

shows much smoother predictions of upper and lower

interface temperatures, with a correlation coefficient

of 0.9999. A constant temperature difference of about

0.05°C is maintained between the upper and lower

temperatures despite our inputs to the K-tester for

both upper and lower temperatures to reach the same

34°C. The derived thermal properties at the mean

temperature of 30.2°C are heat capacity of
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Fig. 2 Center-sensor interface temperature predictions and

measurements for redwood flooring specimen (3%

moisture content)

Fig. 3 Center-A1 interface temperature predictions and mea-

surements for redwood flooring specimen (14% mois-

ture content)

Fig. 1 Surface temperature predictions vs. measurements with

calibrated thermopile for Dow’s aged extruded polysty-

rene foam



1.380 J kg
–1

K
–1

and thermal conductivity of

0.0777 W mK
–1

. If we estimate the oven-dried den-

sity as 299 kg m
–3

and moisture content as 3%, then

derived heat capacity and thermal conductivity are re-

spectively 0.6 and 5.3% less than that of the

well-known formula [15]. No moisture flow involv-

ing the latent heat was needed to achieve the predic-

tive results in Fig. 2.

The redwood specimen was then conditioned in

a 90% RH room for at least a couple weeks, and it at-

tained an overall moisture content of 14%. To better

seal in moisture during a 24-h test (several 8°C jumps

were attempted in a single test run), we used

0.4-mm-thick aluminum 2024-T3 to cover both upper

and lower surfaces of the specimen. The thermal

properties of 2024-T3 are well known at air tempera-

ture from the NIST material databank. Our results

with the first BC solution for the aluminum plate

show it has a negligible influence on the results be-

cause of its high thermal conductivity and low contri-

bution to heat absorbing capacity. The results in

Fig. 3 show that highly moist redwood takes longer to

reach equilibrium and even a closer fit to the mea-

sured values of temperatures, with a correlation coef-

ficient of 0.9999. The derived heat capacity and

‘steady’ thermal conductivity at the mean temperature

of 30.2°C were, respectively, 1.932 J kg
–1

K
–1

and

0.0996 W mK
–1

. Moisture flow with latent heat was

needed that provided an equivalent thermal conduc-

tivity of 0.0315 W mK
–1

. This resulted in a total ther-

mal conductivity of 0.1311 W mK
–1

, or a significant

32% increase over the ‘steady’ thermal conductivity

value. If we once again use the oven-dried density of

299 kg m
–3

and moisture content of 14%, the derived

heat capacity and ‘steady’ thermal conductivity are,

respectively, 10.9 and 4.1% higher than those of the

well-known formula [11].

Conclusions

Our efforts to understand heat and moisture transfer

in a wood specimen as used in the K-tester has led to

an unconventional numerical solution and intriguing

protocol to deriving heat and moisture transfer prop-

erties. Exact analytical solution to the Luikov’s equa-

tions for one-dimensional flow in a porous hygro-

scopic orthotropic material as described in this paper

has the following features. The solution was given for

three types of stepping boundary conditions: (1) step-

ping functions of surface temperature and moisture

and their surface gradients on just one side of the ma-

terial, (2) stepping functions of surface temperature

and moisture on both sides of the material, and (3)

stepping functions of the surface gradients of temper-

ature and moisture on both sides of the material. If

short time intervals and reformulation into recursive

forms are also used, then the resulting

time-discretized solutions are stable, accurate, fast,

simple, and cover most practical situations. The re-

cursive solution procedure described in this paper was

easily implemented in the Excel spreadsheet with Vi-

sual Basic Application (VBA) macros. We demon-

strated its use in a spreadsheet to fit the data, and by

implication it can be used in a computer code that

would be highly competitive with finite difference

methods. Indeed it would serve as a benchmark to any

finite difference methods used to solve for combined

heat and mass transfer, particularly when physical

time scales are orders of magnitude different.

The solutions were also used to answer the sig-

nificance of moisture flow with latent heat as affect-

ing the heat flow within the moist wood. In the case of

redwood with about 14% moisture content, the latent

heat contribution adds 32% to the steady value of

thermal conductivity. With even higher moisture con-

tent, particularly near fiber saturation point, perturba-

tion on conductive heat flow will likely be higher,

perhaps on the order of 50%.

The quasi-impulse transient method is then a vi-

able concept, particularly for high thermal conductiv-

ity materials, because the unidirectional heat flow

was verified with four sensors surrounding the central

sensor. Indeed, with the new procedure, the current

K-tester is no longer limited to low thermal conduc-

tivity materials at steady-state conditions. Because

the K-tester can range from 10 to 80°C, we plan to ex-

amine the moisture and temperature dependencies

and compare with known literature values for wood

products [2–7, 15]. Because the center sensor data

was used in deriving the thermophysical properties,

we plan to cut out the 10 by 10-cm center section at

the end of the test series to properly assess their mate-

rial density and moisture contents. Only then can the

functional relationship be more accurately ascer-

tained for comparison to known formulations and

provided in tables.

The solution method and result also have impli-

cations in related fields, such as ignition of moist

wood under thermal radiation impulse heating. Be-

cause transient moisture mass loss will also occur for

this condition (and measured as well), the moisture

parameters of mass conductivity and thermogradient

coefficient can then be independently determined,

rather than adopting the corresponding values for

pine wood [6] and adjusting them to fit the data, as

was done for this paper.
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